Calculus 140, section 5.5 Indefinite Integrals and Integration Rules

 notes by Tim Pilachowski4.3 Example A redux: Given a function $f(x)=5 x^{4}$ find a function $F(x)$ such that $F^{\prime}(x)=f(x)$. answer: $F(x)=x^{5}+C$

In the example above, the question was phrased, "Find a function $F(x)$ such that $F^{\prime}(x)=f(x)$." There are four other equivalent ways to ask the same thing:
$\begin{array}{lr}\text { Find all antiderivatives of } f(x) . & \text { Integrate } f(x) . \\ \text { Find the integral of } f(x) . & \text { Find } \int f(x) d x .\end{array}$
These are called the indefinite integral of f [Definition 5.15].
Example B: Find all antiderivatives of $f(x)=x^{4}$. answer: $\frac{1}{5} x^{5}+C$

From this example, we can generalize the process for integrating power functions:

$$
\int x^{r} d x=\frac{1}{r+1} x^{r+1}+C, \quad r \neq-1 .
$$

Note the restriction on r. We have to avoid a 0 in the denominator since division by 0 is undefined.
We'll take a close look at $\int \frac{1}{x} d x$ in a later section. Until that time, we'll assume we are integrating $\frac{1}{x}$ only for positive values of x.
Example C: Evaluate $\int \frac{1}{\sqrt{x}} d x$. answer: $2 \sqrt{x}+C$

Now is as good a time as any to point out the " $d x$ " part of the integral $\int f(x) d x$. It is a necessary part of any integral, since we are finding the antiderivative "with respect to $x: f(x)=\frac{d}{d x}[F(x)] \Leftrightarrow \int f(x) d x=F(x)+C$.

Example D: Evaluate $\int e d x$. answer: $e x+C$

Note that in this example, as in all the others, we can easily check our answer by finding its derivative:
$\frac{d}{d x}(e x+C)=6$, which is correct.
Checking your integration by finding the derivative is a good habit to develop.
IMPORTANT NOTE:

Just like differentiation, integration has a sum rule [Theorem 5.16 and Corollary 5.18].

$$
\begin{array}{ll}
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \Rightarrow & \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x & \int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)] \Rightarrow & \\
\quad \int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x & \int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
\end{array}
$$

Example E: Find $\int(\cos t-\sin t) d t$. answer: $\sin t+\cos t+C$

Just like differentiation, integration has a constant multiple rule [Theorem 5.17].

$$
\begin{aligned}
& \frac{d}{d x}[c * f(x)]=c * \frac{d}{d x}[f(x)] \Rightarrow \\
& \quad \int c * f(x) d x=c * \int f(x) d x \quad \int_{a}^{b} c * f(x) d x=c * \int_{a}^{b} f(x) d x
\end{aligned}
$$

Example F: Find the integral of $f(x)=\frac{7}{9} e^{x}$. answer: $\frac{7}{9} e^{x}+C$

Example G: Evaluate $\int_{1}^{4}(x-\sqrt{x})^{2} d x$. answer: $\frac{111}{30}$

Example H: Evaluate $\int_{1}^{\pi / 2}\left(\sqrt[3]{x^{2}}+\frac{1}{4 x}-5 e^{x}+6 \sin x+7 \cos x\right) d x$.
answer: $\frac{3}{5}\left(\frac{\pi}{2}\right)^{5 / 3}+\frac{1}{4} \ln \left(\frac{\pi}{2}\right)-5 e^{\pi / 2}-5 e-6 \cos (1)+7 \sin (1)+\frac{32}{5}$
(Note that domain of $\ln x$ is not an issue, since the interval I over which we're integrating contains only positive values for x.)

